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A perturbation theoretical method is proposed that allows determination of the function
describing the dependence of the intramolecular XH(D) potential on the hydrogen bond
strength. Treating the XH(D) oscillators as mixed cubic–quartic oscillators in which the
stretch–stretch couplings of the ν(X–H(D)) mode with the internal modes of the radical X
may be neglected, and introducing the hydrogen bonding influence through the changes in
the harmonic diagonal force constants (as proposed by Sceats and Rice [41]), it is possible
to extract the analytical form of the function krr = f (RX...Y) from the experimental ν̃XH(D)

versus RX...Y correlations. The other parameters obtained by the empirical correlations,
within this model, also have an exact physical meaning. The method is applicable to weak
hydrogen bonds as well as to hydrogen bonds of intermediate strength, and, strictly speaking,
to linear X–H(D) . . .Y systems. However, extension to arbitrary geometry may be easily
done.

1. Introduction

The hydrogen bond interaction as a general problem has received significant at-
tention. Much work has been done in this field, from both theoretical and experimental
viewpoints [42 and references therein]. Several theoretical approaches are currently in
use in order to explain the experimentally observed peculiarities related to this phe-
nomenon. It is widely accepted that in a hydrogen bonded X–H . . .Y system, the X–H
oscillator is coupled both to the low-frequency ν(X . . .Y) mode [2,27–30,49,52], and
to the various modes due to the radical X [22,46], the first one being of key importance
for explanation of many properties of such complexes [46]. However, for weak and
moderately strong hydrogen bonds, this coupling can be treated within the adiabatic
approximation [30]. Another, in a sense more phenomenological, approach is that of
Sceats and Rice [41]. In order to analyze the overtone spectrum of ice I, these authors
adopted the following approach. The free (non-hydrogen-bonded) water molecule was
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treated as a cubic–quartic anharmonic oscillator, with a potential of the form

V̂ =
1
2
krr
(
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2

)
+

1
2
kααr
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e∆α
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(
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)
+ krrrr

(
∆r4
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)
(1)

(using the usual notation [41]). It has been shown [41] that even in gas phase, the
inclusion of only stretching anharmonicities is a good approximation to the true an-
harmonic potential. The terms of the type

kααrre∆α2(∆r1 + ∆r2) (2)

may, thus, be neglected. The only change in the anharmonic potential resulting from
the hydrogen bonding interaction is in the force constant krr and the stretch–stretch
interaction force constant krr′ .

It follows from this assumption that in the case of a hydrogen bonded HDO
molecule, one may completely include the effect of hydrogen bonding on the inde-
pendent OH and OD oscillators through the changes in the corresponding diagonal
harmonic force constants. This assumption should also be valid for other systems in
which the stretch–stretch couplings of the X–H(D) group with some internal modes of
the radical X in an X–H(D) . . .Y complex are negligible. It is important to mention at
this point that the Sceats–Rice potential is, in fact, a second-order perturbation based
expression derived from the Smith–Overend potential [51]. The assumption of Sceats
and Rice has been successfully applied to the analysis of the overtone spectrum of
ice I [41], for a series of methanol complexes with organic bases [39], as well as for
a theoretical explanation of the observed ν̃01,OH/ν̃01,OD versus ν̃01,OH correlations in
solid hydrates [51]. In the latter work, the variational one-dimensional problem with a
simple cubic–quartic potential was solved also with a modified Sceats–Rice potential,
which explicitly accounts for the change in the equilibrium X–H distance in the course
of hydrogen bonding.

In this work, starting with the Sceats–Rice assumption, we derive a perturbation
theoretical method that enables extraction of the function describing the dependence
of diagonal harmonic force constant on the X . . .Y distance from experimental data.
Strictly speaking, the method is applicable to linear X–H(D) . . .Y complexes, in which
the stretch–stretch couplings of the X–H mode with the internal modes of the radical
X may be neglected.

2. Theoretical model

Let us consider a cubic–quartic X–H(D) oscillator in which the stretch–stretch
couplings with the internal modes of the radical X may be neglected (e.g., the HDO
molecule). The Hamiltonian of such an anharmonic oscillator (“free” X–H(D) system)
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with a reduced mass µ, in a one-dimensional approximation, can be written in the
form [51]

Ĥ (0) =
p̂ 2

2µ
+

1
2
k(0)
rr ∆r2 + k(0)

rrr∆r
3 + k(0)

rrrr∆r
4. (3)

The superscripts (0) refer to a state not perturbed by hydrogen bonding. The quantity
∆r is defined as r − r0, r and r0 being the momentary and the equilibrium X–H(D)
distance, respectively. According to the assumption of Sceats and Rice [41], later
modified in some aspects by Wòjcik, Lindgren and Tegenfeldt [51], the whole effect
of hydrogen bonding interaction with an atom Y may be introduced through a change
in the diagonal harmonic force constant of this system. The other terms in the poten-
tial may be regarded as practically unchanged. The Hamiltonian (3), thus, takes the
following form:

Ĥ =
p̂ 2

2µ
+

1
2
krr∆r2 + k(0)

rrr∆r
3 + k(0)

rrrr∆r
4. (4)

The whole increase in the anharmonicity of the X–H(D) mode due to the hydrogen
bonding, according to this model, can be attributed to the increased amplitude of
motion of the hydrogen atom. Let us now consider the relationship between krr and
k(0)
rr . Considering only linear hydrogen bonds, and particular proton donor X and

proton acceptor Y, krr will depend on k(0)
rr and the hydrogen bond distance (RX...Y).

The previous statement is analogous to the assumption that the hydrogen bond strength
is directly proportional to RX...Y. For various X and Y, it would also depend on the
effective charge on the proton acceptor atom.

In order to apply the stationary perturbation theory approach, it is convenient to
write the function describing the dependence of krr on RX...Y (denoted by R further
in the text) in the following form:

krr = k(0)
rr

[
1− f (R)

]
. (5)

The function f (R) should satisfy the following obvious requirements:

(a) limR→∞ f (R) = 0,

(b) max f (R) = f (R0) = 1,

(c) limR→R+
0
f (R) = 1,

(d) f (R)� 1, R� R0, i.e., for consistency with the previous requirements,

df (R)
dR

< 0, R ∈ (R0,∞),

(e) f (R) = 0, R ∈ (−∞,R0) (values without physical meaning),

where R0 is a constant, which may be regarded as some critical distance at which the
X–H(D) oscillator no longer exists. However, the physical significance of this constant
is not important at this point, because in this model, only weak and hydrogen bonds
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of moderate strength are considered. Thus, only cases characterized by R � R0 are
of interest.

Within the previous assumptions, the parameter R will practically completely
include the dependence of krr on the hydrogen bond strength for a given X and Y
pair.

Combining (5) and (4), the Hamiltonian of the oscillator perturbed by hydrogen
bonding takes the form

Ĥ = Ĥ (0) − 1
2
k(0)
rr f (R)∆r2. (6)

The second term in (6) is small, so it may be regarded as a small perturba-
tion to the non-hydrogen-bonded oscillator. The perturbation operator is, in this
case,

V̂ = −1
2
k(0)
rr f (R)∆r2. (7)

It should be borne in mind that the unperturbed eigenvalue problem

Ĥ (0)
∣∣Ψ(0)

n

〉
= E(0)

n

∣∣Ψ(0)
n

〉
(8)

refers to the cubic–quartic anharmonic oscillator. The energy of the nth level of the
hydrogen-bonded system may be represented by the perturbation series

En = E(0)
n +E(1)

n +E(2)
n + · · · . (9)

In order to calculate corrections of various orders to the energy spectrum of the
unperturbed system, the matrix elements of the type

Vmn =
〈
Ψ(0)
m

∣∣V̂ ∣∣Ψ(0)
n

〉
(10)

calculated in the basis {|Ψ(0)
n 〉} are required.

Substituting the expression for the perturbation operator, the matrix elements (10)
take the form

Vmn = −1
2
k(0)
rr f (R)

〈
Ψ(0)
m

∣∣∆r2
∣∣Ψ(0)

n

〉
. (11)

The corrections to the energy of various orders are thus easily obtained. The corre-
sponding expressions are

E(1)
n = f (R)

[
−1

2
k(0)
rr
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n

∣∣∆r2
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n
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1
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+
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...

The energy expression, thus, takes the form

En = E(0)
n + f (R)f (1)

n + f 2(R)f (2)
n + f 3(R)f (3)

n + · · · , (15)

where
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...

Since we consider weak hydrogen bonds (i.e., f (R)� 1), the terms that contain
f 2(R), f 3(R) etc. in (13) may be neglected, and the energy expression reduces to

En = E(0)
n + f (R)f (1)

n . (19)

The energy difference between the ground and the first excited vibrational state, on
the basis of (19) is, thus,

E1 −E0 =E(0)
1 −E

(0)
0

− k(0)
rr

2

[〈
Ψ(0)

1 (r)
∣∣∆r2

∣∣Ψ(0)
1 (r)

〉
−
〈
Ψ(0)

0 (r)
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∣∣Ψ(0)
0 (r)

〉]
f (R) (20)

or, expressed in terms of the wavenumber for the corresponding fundamental transition,

ν̃01 = ν̃(0)
01 −

k(0)
rr

2hc

[〈
Ψ(0)

1 (r)
∣∣∆r2

∣∣Ψ(0)
1 (r)

〉
−
〈
Ψ(0)

0 (r)
∣∣∆r2

∣∣Ψ(0)
0 (r)

〉]
f (R). (21)

The last equation describes the dependence of the experimentally measured wave-
number of the 1← 0 transition on the hydrogen bond length R. Much effort has been
done in order to establish empirical correlations between these two quantities [5,18,
24,32,33,38]. It has been shown that for a great variety of systems, experimental data
can be successfully modeled with a function of the type

ν̃01 = ν̃01,f −A exp(−aR), (22)
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where the quantity ν̃01,f is the value referring to a non-hydrogen-bonded (“free”) sys-
tem.

Equations (21) and (22), thus, enable determination of the function f (R) for
particular series of compounds, from experimentally obtained correlation equations.
According to the experimental data, it often has the following form:

f (R) = exp(−aR). (23)

Further, the constant A is equal to the quantity

k(0)
rr

2hc

[〈
Ψ(0)

1 (r)
∣∣∆r2

∣∣Ψ(0)
1 (r)

〉
−
〈
Ψ(0)

0 (r)
∣∣∆r2

∣∣Ψ(0)
0 (r)

〉]
. (24)

If the diagonal harmonic force constant for the unperturbed system is known, an ex-
perimental determination of the difference〈

Ψ(0)
1 (r)

∣∣∆r2
∣∣Ψ(0)

1 (r)
〉
−
〈
Ψ(0)

0 (r)
∣∣∆r2

∣∣Ψ(0)
0 (r)

〉
through the constant A is possible.

It should be pointed out that the usage of the gas-phase wavenumbers in such
empirical correlations has been a subject of many discussions [32,37], at least for
solid crystalline hydrates. It is even intuitively clear that a more representative value
for these systems would be the one for an oscillator placed in exactly the same crys-
tal surrounding, which does not take part in hydrogen bonding. The model derived
in this work further supports the previous statement. However, since such a situa-
tion (non-hydrogen-bonded system in a particular crystal environment) is practically
inaccessible experimentally, the usage of the gas-phase values yields useful approxi-
mation.

Inclusion of higher-order energy corrections in (19) and (20) leads to the following
relation between ν̃01 and R:

ν̃01 = ν̃(0)
01 −Af (R) +Bf 2(R) + Cf 3(R) + · · · , (25)

where the constants B and C are given by

B =
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It is important to recall at this point that the outlined model is based on
Rayleigh–Schrödinger perturbation theory (RSPT), using the non-hydrogen-bonded
(cubic–quartic) anharmonic XH(D) oscillator as an unperturbed eigenvalue problem.
In fact, great attention has been paid to the general problem of anharmonic oscillators
in the literature [1,3,4,6–14,17,19–21,23,26,31,35,36,40,43–45,47,48,50,53,54]. This is
mainly due to both fundamental significance of the problem, and its applicability to real
physico-chemical systems. It has been firmly elaborated that the RSPT is not the most
efficient computational technique for treatment of the anharmonic oscillators [4,44].
Obviously, the obtained expressions beyond the second order become somewhat cum-
bersome. A lot of theoretical work has been devoted to overcome the shortcomings
of the RSPT [1,3,6–14,17,19–21,23,26,31,35,36,40,43,45,47,48,50,53,54], and meth-
ods like Hill determinant approach [9,17], inner product perturbation technique [50],
hypervirial relations [3,23,40], operator method [11–13], Hsue–Chern approach [36],
Van Vleck perturbation theory [43], as well as the quantum Monte-Carlo methodolo-
gies have been developed [7]. However, for the present approach the RSPT model
is sufficient as it allows a straightforward derivation of analytical expressions relating
experimentally observable parameters. Furthermore, it allows an assignment of an
exact physical significance to the parameters obtained statistically.

As it has been pointed out several times, the present model is applicable for
weak hydrogen bonds as well as for those of intermediate strength. In such cases,
the inclusion of the first order corrections to the energy should be sufficient to obtain
the mentioned relationships. This is so since both the constants B and C that appear
in (25) and the corresponding f 2(R) and f 3(R) terms are at least an order of magnitude
smaller than the constant A and f (R). On the other hand, according to the experimental
results [33], the ν̃XH(D) and RX...Y values correlate very well for weak and moderately
strong hydrogen bonds, while the correlation becomes significantly poorer for strong
ones. At least partially, this poorer correlation may be attributed to complications
connected with the assignment of the ν(XH(D)) modes in the case of strong hydrogen
bonds, due to broadness and structure of the corresponding spectral bands [25,33]. It is,
however, suggested by the elaborated model that there is a more fundamental reason for
it. It should also be mentioned at this point that not all of the empirical correlations of
this type include only linear hydrogen bonds, which further complicates the situation.
In the case of nonlinear hydrogen bonds, the distance between the proton donor and
the proton acceptor is not the only factor governing the hydrogen bond strength for
a given combination of proton donor and proton acceptor. The observed scatter of
experimental points in regression analyses of the mentioned types is, thus, somehow
expected.
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The most reliable experimental parameter characterizing the hydrogen bond
strength is the spectroscopically determined wavenumber of the 1← 0 transition of
an isotopically isolated X–H(D) oscillator – ν̃01, involved in the hydrogen bonding
interaction. Although the value of the last parameter depends on other factors as
well [15,16,34], such as the local crystalline field strength (long-range interactions),
the magnitude of short-range forces, etc., it still allows a much better characteri-
zation of the hydrogen-bonded system than the structural parameters, such as proton
donor–proton acceptor distance RX...Y. Strictly speaking, the above presented model is
applicable for a series of linear hydrogen bonds, and a particular proton donor–proton
acceptor pair. A question arises as to how is the nonlinearity of the H-bonds reflected
on the X–H potential dependence on the hydrogen bond strength within this model,
or, in other words, can equation (25) coupled with the experimental ν̃01 data serve as
a test for nonlinearity of hydrogen bonds? If a given X–H . . .Y system is nonlinear,
the measured ν̃01 value is expected to be significantly higher than the value predicted
on the basis of correlation equations of the form (25), derived using the (ν̃01,RX...Y)
data for a series of structurally similar compounds, characterized by linear (or almost
linear) H-bonds in the structure. It is, thus, expected that the largest discrepancy be-
tween theoretical predictions and experimental findings should appear for such a case.
Thus, for a series of structurally similar compounds (preferably isomorphous), and a
particular proton donor–proton acceptor pair, equations of the form (25) coupled with
the experimental (ν̃01,RX...Y) data may indicate nonlinearity for a particular member
of the series.

However, if data for a large number (variety of hydrogen bond strengths) of
systems with linear (or almost linear) hydrogen bonds are available, than the presented
model is a basis for a choice of the best model function for the empirical correlations.
Namely, inclusion of some function in (25) would allow the best fit of experimental
data within a wide range of R values. That function would be also the best physically
based one, and it would allow most accurate determination of the coefficients in (25)
derived by the perturbation-theoretical expansion.

3. Conclusions

Within the assumption of Sceats and Rice, a perturbation theoretical method
was derived that enables determination of the analytical form of the function krr =
f (RX...Y) on the basis of experimentally obtained ν̃01,XH(D) versus RX...Y correlations.
The experimental data show that this function is often of the form krr = k(0)

rr [1 −
exp(−aRX...Y)]. The other parameters obtained by empirical correlations have also an
exact physical meaning within the framework of the proposed model.
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[52] H. Zelsmann and Y. Marèchal, Chem. Phys. 20 (1977) 459–466.
[53] M. Znojil and L. Majling, J. Phys. A 16 (1983) 639–650.
[54] M. Znojil, Phys. Rev. D 34 (1986) 1224–1228.


